If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t-4.9t^2=0
a = -4.9; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-4.9)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-4.9}=\frac{-6}{-9.8} =2/3.2666666666667 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-4.9}=\frac{0}{-9.8} =0 $
| 7.4=4w-5.4 | | 16+8x=6x-12,x= | | 2(m-2)+8m=m-40 | | 6(x-9)-8(x+7)=1-3(x-8) | | (2+x)+21+45+70=180 | | 19-2b=-4b-15 | | y-4y=7+8 | | (x+14)+21+96=180 | | 6(x-9)-8(x+7)=1-(x-8) | | 64+2x+86=x+150 | | -4(-2u+2)-2u=2(u-2)-2 | | 19.31-6.7d-18.39=-19.03-8.2d | | 13.14=2g+3.88 | | 3/10x-(-2/5)=-1 | | 2/3(3-8x)=3(8x-4) | | 2v+15=49 | | 1/8a-28=10 | | 6n=4n-16 | | x+2x+(2x+1)=21 | | 2x³=-54 | | 4/x-3+5=29/x-3 | | b=200+.025 | | -12+3y=-14+2y+20 | | 118=-4x+48 | | -8x+5(x-3)=-24 | | a=300+.014 | | -10g-2=-9g+9 | | $5=z/4{z}{-4}-3$. | | 3/4-6=1/4y+10 | | 19.13+3.2m=-19.81-3.4m | | -9.3=3.2+w÷5 | | X2+12x-9=0 |